

2013 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade		
A	72+	47.2%		
В	60+	22.2%		
С	49+	17.2%		
D	43+	5.5%		
No award	< 43	7.8%		

Section:	Multiple Choice		Extended Answer	
Average Mark:	22.3	/30	45.8	/70

20	2013 Revised Higher Chemistry Marking Scheme					
MC Qu	Answer	% Pupils Correct	Reasoning			
1	В	88 OldH=74	 ☑A Electronegativity of lithium = 1.0 ☑B Electronegativity of chlorine = 3.0 ∴ greatest attraction for bonding electrons ☑C Electronegativity of sodium = 0.9 ∴ smallest attraction for bonding electrons ☑D Electronegativity of bromine = 2.8 			
2	D	76 OldH=63	 ☑A boron has a melting point of 2300°C ∴ covalent network structure ☑B carbon (diamond) sublimes at 3642°C ∴ covalent network structure ☑C silicon has a melting point of 1410°C ∴ covalent network structure ☑D sulphur has a melting point of 113°C ∴ molecular covalent structure 			
3	С	71 OldH=59	 A potassium atom (2,8,8,1) is larger than potassium ion (2,8,8) B Chloride ion (2,8,8) is not smaller than a chlorine atom (2,8,7) C Sodium atom (2,8,1) is larger than a sodium ion (2,8) Oxygen atom (2,6) is not larger than an oxide ion (2,8) 			
4	С	49 OldH=50	 A Metal elements contain metallic bonding B All elements contain London dispersion forces between atoms C Atoms in elements must have same electronegativity so bonds cannot be polar All molecular elements contain non-polar covalent bonding e.g. H₂, N₂, O₂, P₄ 			
5	D	76 OldH=69	A Elements can not have ionic bonds (ionic bonding only found in compounds) B Covalent bonds are strong bonds C Melting does not involve the removal of outer electrons (melting=physical change) D Weak inter-molecular bonds are easily overcome in elements with low melting pt			
6	D	58	Compounds containing -OH hydroxyl groups have hydrogen bonding between nolecules ∴ hydrogen bonding brings molecules closer together. Compound D has wo -OH hydroxyl groups and is more viscous due to the additional hydrogen bonding compared to the other compounds which only have one -OH group per molecule.			
7	A	84	Oxidising agents are reduced themselves while oxidising something else. $\square A \text{ Li} \rightarrow \text{Li}^* + e^-$ is oxidation, lithium is top of ECS \therefore powerful reducing agent $\blacksquare B \text{ Br}_2 + 2e^- \rightarrow 2\text{Br}^-$ is a reduction reaction \therefore acts as an oxidising agent $\blacksquare C \text{ F}_2 + 2e^- \rightarrow 2\text{F}^-$ is a reduction reaction \therefore acts as an oxidising agent $\blacksquare D \text{ Al}^{3+} + 3e^-$ is oxidation, acts as a reducing agent but as high as Li in ECS			
8	С	85	 A Butanal (C₄H₈O) is not an isomer of the structure shown (C₄H₁₀O) B Butanone (C₄H₈O) is not an isomer of the structure shown (C₄H₁₀O) C Butan-1-ol (C₄H₉OH) is an isomer of 2-methylpropan-2-ol (C₄H₉OH) D Butanoic acid (C₄H₈O₂) is not an isomer of the structure shown (C₄H₁₀O) 			
9	D	87 OldH=82	 A hexanal has a formula of C₆H₁₂O B hexan-2-ol has a formula of C₆H₁₄O, usually written as C₆H₁₃OH C hexan-2-one has a formula of C₆H₁₂O D hexanoic acid has a formula of C₆H₁₂O₂, usually written as C₅H₁₁COOH 			
10	В	84 OldH=73	CH ₃ CH ₂ CH ₂ COOCH ₂ CH ₃ carboxylic acid side (2 nd name in ester) 4 carbon carboxylic acid ∴ -butanoate ∴ Ester name = ethyl butanoate			

			2	2		
		~	O	<u>O</u>		
11	Δ	86		lensation		
TT	T	OldH=70	$-C - OH + H - O - \frac{1}{water}$	r = C - O -		
		OldH=70		ester link		
			🗷 A oils are liquids at room temperature			
10	~	91	B oils are liquids at room temperature			
12	C	71	☑C oils are liquids and have a higher proportion of	unsaturated molecules		
	OldH=83 ID oils are liquids at room temperature but are more unsaturated than for					
			\blacksquare A Amino Acid with R group = -CH ₃ should be left			
10	~	65	B Amino Acids shown in dipeptide are not next t			
13	D	05	$\blacksquare C$ Amino Acid with R group = $-CH(CH_3)_2$ should be	• •		
	-	OldH=36	☑D Dipeptide shown has middle and right amino ac			
			EA Cyclohexane is a non-polar hydrocarbon and no			
4 4	~	00	B hexane is a non-polar hydrocarbon and not a so	• •		
14	C	80	☑C hydrogen bonding in ethanol makes it best solv			
			ED trichloromethane is polar but not best solvent	- · ·		
			☑A shape is distorted during denaturing and does	· · · · · · · · · · · · · · · · · · ·		
1 =		02	B amide links in a protein are not broken/hydrol			
15	A	93	EC amide links in a protein are not broken/hydrol			
			ED amide links in a protein are not broken/hydrol			
			🗷 A compound 2 (butan-2-ol) is a secondary alcoho			
1/	~	76	B compound 2 (butan-2-ol) is a secondary alcoho			
16	C		☑C Both alcohols are primary alcohols and oxidise to			
		OldH=68	🗷 D compound 3 (2-methylpropan-2-ol) is a tertiar			
			\mathbb{E} A 2-methylbutanal (C ₅ H ₁₀ O) is not an isomer of I			
17	D	70	☑B 3-methylpentan-2-one (C ₆ H ₁₂ O) is an isomer or			
17	В	10	■C 2,2-dimethylbutan-1-ol (C6H13OH) is not an iso			
			ED 3-ethylpentanal (C7H14O) is not an isomer of h	nexanal (C6H12O)		
			🗷 A condensation: small molecules joining together	r with removal of water molecule		
10	$\boldsymbol{\mathcal{C}}$	61	B esterification: alcohol and carboxylic acid join			
18	C	01	☑C hydrolysis: splitting molecule into smaller mole	ecule with water added at break		
			ED oxidation: increase in oxygen:hydrogen ratio			
10	D	00	Formula of limonene = $C_{10}H_{16}$			
19	В	88	Isoprene units are units of 5 carbons \therefore limonene f	formed from 2 isoprene units		
			4mol of Br⁻ ions in MgBr₂ ∴ 2mol of MgBr₂ formula	a units ∴ 2 mol of Ma ²⁺ ions		
20	Δ	58	3 mol of Mg^{2+} ions in total = 2 mol Mg^{2+} ions in MgB	-		
	11		1 mol of Mg ²⁺ ions in MgSO ₄ \therefore 1 mol MgSO ₄ formula			
		2.311=00	$2C_2H_{2(g)} + 5O_{2(g)} \longrightarrow$	4CO _{2(g)} + 2H ₂ O _(l)		
21	٨	76	2mol 5mol	4mol 2mol		
21	A		2vol 5vol	4vol negligible volume		
		OldH=70	100cm ³	200cm ³ -		
	•	01	Factor Rate of Forward Reactions	Rate of Back Reaction		
22	D	91	Change after Reaction already at equilibrium so	Reaction already at equilibrium so		
	Ŭ	OldH=82	two hours remains unchanged two hours later	remains unchanged two hours later		
			🗷 A increase in pressure would favour the forward	d reaction to reduce gas volume		
22	^	67	B same no. of moles of gas on either side of arro	-		
23 C		07	☑C increase in pressure would favour the reverse	reaction to reduce gas volume		
		OldH=68	🗷 D same no. of moles of gas on either side of arro	ow \therefore pressure has no effect		
			■A Equilibrium lies to left ∴ percentage yield so low			
24	В	53	☑B atom economy is high and percentage yield is low			
			■C Equilibrium lies to left : percentage yield so low			
			☑D atom economy = 100% as there is only one product			

			☑A both factors would increase the rate of reaction					
25	•	▲ 68	B an increase in activation energy would decrease the rate of reaction					
25	A		EC an increase in particle size would decrease the rate of reaction					
		OldH=69	D a decrease in surface area of reactants would decrease the rate of reaction					
			For a reaction to take place at room temperature:					
26	B	57	 reaction is likely to have a small activation energy 					
20		OldH=43	 reaction is likely to be exothermic 					
			1mol $CH_3OH = (1\times12) + (4\times1) + (1\times16) = 12+4+16 = 32q$					
27		77	1mol CH3OH = -727 kJ = 32g					
21	A		$= -72.7 \text{ kJ} = 32 \text{g} \times \frac{-72.7}{-727}$					
		OldH=81	= 3.2g					
			• HCOOH + $\frac{1}{2}O_2 \rightarrow CO_2$ + H ₂ O Δ H = b					
			$\mathbf{O} \qquad \qquad \mathbf{C} + \mathbf{O}_2 \rightarrow \mathbf{C} \mathbf{O}_2 \qquad \qquad \Delta \mathbf{H} = \mathbf{c}$					
			$\bullet \qquad H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \Delta H = d$					
00		70						
28	A	A /0	$0_{x-1} \qquad CO_2 + H_2O \rightarrow HCOOH + \frac{1}{2}O_2 \Delta H = -b$					
_		OldH=83	$\mathbf{C} + \mathbf{O}_2 \rightarrow \mathbf{C}\mathbf{O}_2 \qquad \Delta \mathbf{H} = \mathbf{C}$					
			Add 0 '+ 2 + 6 $C + H_2 + O_2 \rightarrow HCOOH$ $\Delta H = c+d-b = a$					
			🗷 A beakers do not accurately measure volumes					
20	B	52	$ ensuremath{m{\square}}\ensuremath{B}$ burette will measure volumes to an accuracy of $\pm 0.1 ext{cm}^3$					
29	D	53	🗷 C pipettes will accurately the volume marked on pipette (not any other volume)					
			D measuring cylinders do not accurately measure volumes					
			🗷 A Collection over Water: gases can be collected after bubbling through water					
30		85	B Distillation: separation of liquids with different boiling points					
50			EC Evaporation: Used to separate water/solvent from solute in a solution					
			☑D Filtration: separation of insoluble solids from water/solutions					

201	3 Revised H	ligher Chemistry Marking Scheme				
Long Qu	Answer	Reasoning				
1 a(i)	$K(g) \rightarrow K^{+}(g) + e^{-}$	1 st Ionisation Energy: The energy required to remove one mole of electrons from one mole of atoms in the gaseous state.				
1a (ii)	Outer electron is further from nucleus	Potassium atoms are bigger than chlorine atoms so the outer electron is further from the nucleus of potassium than an outer electron in a chlorine atom and the nucleus of the atom has less of a hold on electrons further from the nucleus.				
1b	8	Fatty acids contain carboxyl -COOH groups which react with hydroxyl -OH groups to form an ester group. Sucrose contains 8 hydroxyl -OH groups.				
2a	Terminates/reacts with free radicals	Free radical scavengers are chemicals that are able to mop up free radicals (chemicals with an unpaired electron) and will stop further free radical reactions.				
2b	C6H8O6 ↓ C6H6O6 + 2H⁺ + 2e⁻	Write down the main species $C_6H_8O_6 \longrightarrow C_6H_6O_6$ Balance all atoms other than O and H (not needed in this example) $C_6H_8O_6 \longrightarrow C_6H_6O_6$ Balance O atoms by adding H ₂ O to other side (not needed in this example) $C_6H_8O_6 \longrightarrow C_6H_6O_6$ Balance H atoms by adding H ⁺ to other side $C_6H_8O_6 \longrightarrow C_6H_6O_6 + 2H^+$ Balance charge by adding e ⁻ to the most positive side $C_6H_8O_6 \longrightarrow C_6H_6O_6 + 2H^+ + 2e^-$				
За	Answer to include:	Trichloromethane is a polar molecule and there are permanent dipole to permanent dipole attractions with the polar water molecules making it soluble. Tetrachloromethane is a non- polar molecule due to the shape, of the molecule and is insoluble in polar water.				
3b	-115	$\begin{array}{c c} \hline Bond \ Breaking \ Steps \\ 4x \ C-H = 1x412kJ = 1648kJ \\ 1x \ Cl-Cl = 1x243kJ = 243kJ \\ Total = 1891kJ \\ \hline \Delta H = \Sigma Bond \ enthalpies \ for \ bonds \ broken \ - \Sigma Bond \ enthalpies \ for \ bonds \ formed \\ \Delta H = 1891 \\ \Delta H = -115 \ kJ \ mol^{-1} \\ \end{array}$				
4a (i)	One from:	Tollen's Reagent Benedict's Solution Fehling's Solution Acidified Dichromate solution hot copper (II) oxide				
4a (ii)	Carboxylic acids	Phenylethanal is an aldehyde and oxidise into carboxylic acids Oxidation of Alcohols Primary alcohol Aldehyde Carboxylic Acid Secondary alcohol Tertiary alcohol X Image: No oxidation				
4 b(i)	One answer from:	Keeps oil & water-soluble materials mixedAllow immiscible substances to mixTo allow fat and water to mixTo form a suspension				
4b(ii)	Glycerol	Glycerol is also known as propane-1,2,3-triol and has the structure: H H H H - C - C - C - H OH OH OH				
4c	6.67	28% of 17g biscuit = $\frac{28}{100}$ ×17g = 4.76g chocolate 1.0g chocolate = 1.4mg theobromine 4.76g chocolate = 1.4mg theobromine × $\frac{4.76}{1}$ = 6.67mg theobromine				

		3 mark answer	2 mark answer	1 mont onewor	
4d	Open Question Answer to include:	S mark answer Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	2 mark answer Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	
5α	75%	$C_{7}H_{6}O_{3} + C_{4}H_{6}O_{3} \longrightarrow C_{9}H_{8}O_{4} + C_{2}H_{4}O_{2}$ $1 \text{mol} \qquad 1 \text{mol} \qquad 1 \text{mol} \qquad 1 \text{mol}$ $138g \qquad 102g \qquad 180g$ $atom \text{ economy} = \frac{\text{mass of desired product}}{\text{total mass of reactants}} \times 100 = \frac{180g}{240g} \times 100 = 75\%$			
5b	40.0%	$\begin{array}{r} gfm \ salicylic \ acid \ C_7H_6O_3 = (7\times12)+(6\times1)+(3\times16) = 84+6+48 = 138g\\ gfm \ aspirin \ C_9H_8O_3 = (9\times12)+(8\times1)+(4\times16) = 108+8+64 = 180g\\ C_7H_6O_3 + C_4H_6O_3 \longrightarrow C_9H_8O_4 + C_2H_4O_2\\ 1mol & 1mol\\ 138g & 180g\\ 5.02g & 180g \times \frac{5.02}{138}\\ = 6.58g \ (100\% \ theoretical) \\ \% \ yield = \frac{actual}{theoretical} \times 100 = \frac{2.62}{6.58} \times 100 = 40.0\% \end{array}$			
6a (i)	Carboxyl	The carboxyl group is found in carboxylic acids and			
6a(ii)	Diagram showing:				
6a(iii)	Diagram showing:	$O \\ H_2 - CH_3 \\ Na^+ - O - C - CH_2 - N \\ CH_2 - CH_3 \\ CH_2 - CH_3$			
6b	25min	Anaesthetic X resembles procaine on the left side ∴ 7min duration must be starting point in calculation of duration of X Anaesthetic X has N-containing ring structure: Mepivacaine has the same N-containing ring structure and has a duration 18 min longer than lidocaine which lacks the n-containing ring (and looks like procaine too) ∴ Anaesthetic X should have a duration 18 minutes longer than procaine = 7 + 18 min = 25 min			

		1kg body mass = 4.5 mg lidocaine			
		70kg body mass = 4.5 mg lidocaine x $\frac{70}{1}$			
		-			
6c	31.5	= 315mg lidocaine			
		10mg lidocaine = 1cm ³ lidocaine solution			
		315mg lidocaine = 1 cm^3 lidocaine solution x $\frac{315}{10}$			
		= 31.5cm ³ lidocaine solution			
	Benzocaine is a	Other acceptable answers: Benzocaine has weaker London Benzocaine has Benzocaine more soluble/attracted			
6d(i)		Benzocaine has weaker London Benzocaine has Benzocaine more soluble/attracted Dispersion Forces Iower boiling point to mobile phase			
	Tetracaine is bigger	Benzocaine has weaker Van Benzocaine is Benzocaine less strongly attracted der Waal's forces more polar to the stationary phase			
		The area under the peak is proportional to the quantity of chemical.			
6d(ii)	Lidocaine and caffeine peaks overlap	When peaks overlap due to similar retention times it is impossible to			
		calculate the individual areas for each chemical.			
6d(iii)	Peak drawn showing:	Peak must be at same retention time as peak E (~6.3minutes) Peak must be approximately half the height of original peak E			
		syringe			
7 a(i)	Diagram Showing:	conical flask			
<i>, α</i> (1)		/hydrochloric acid			
		iron(II)sulphide			
		no. of mol = Volume = 0.079litres Molar Volume = 0.00329mol			
7	0.289g	$FeS + 2HCI \longrightarrow FeCl_2 + H_2S$			
7a (ii)		1mol 1mol 0.00329mol 0.00329mol			
		1mol FeS = (1x55.8) + (1x32.1) = 55.8+32.1 = 87.9g			
		mass = no. of mol × gfm = 0.00329mol × 87.9 g mol ⁻¹ = 0.289g			
	Covalent Molecular	Sublimation from a solid into a gas at 310°C would indicate covalent			
7b(i)	or	bonding as ionic compounds melt at higher temperatures. Insolubility on water could indicate non-polar bonding (ionic bonding is			
	Discrete Covalent	polar and can dissolve in water)			
7 h/	Equation aboving	$Al_2S_3 + 6H_2O \longrightarrow Al_2O_3 + 3H_2S$			
7b(ii)	Equation showing:	aluminium sulphide water aluminium oxide hydrogen sulphide			
		$ O + \frac{1}{2}O_2 \rightarrow CO_2 \qquad \Delta H = -283 \text{ kJ mol}^{-1} $			
		$ \begin{array}{cccc} \Theta & H_2 + \frac{1}{2}O_2 \rightarrow H_2O & \Delta H = -242 \text{ kJ mol}^{-1} \\ \Theta & O_1 & O_2 & O_2 & O_1 & O_2 & O_2 & O_2 \\ \end{array} $			
		$\bullet \qquad CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \Delta H = -803 \text{ kJ mol}^{-1}$			
8a	206	$\bullet x-1 \qquad CO_2 \rightarrow CO + \frac{1}{2}O_2 \qquad \Delta H = +283 \text{ kJ}$			
ou	200	$ \begin{array}{ccc} \mathbf{\Theta} \mathbf{x} - 3 & & 3 \mathbf{H}_2 \mathbf{O} \rightarrow 3 \mathbf{H}_2 + 1 \frac{1}{2} \mathbf{O}_2 & & \Delta \mathbf{H} = +726 \text{ kJ} \\ \mathbf{\Theta} & & \mathbf{C} \mathbf{H}_4 + 2 \mathbf{O}_2 \rightarrow \mathbf{C} \mathbf{O}_2 + 2 \mathbf{H}_2 \mathbf{O} & & \Delta \mathbf{H} = -803 \text{ kJ} \end{array} $			
		$\bigcirc \qquad \bigcirc \qquad$			
		Add $O'+O'+O$ $CH_4 + H_2O \rightarrow CO + 3H_2 \qquad \Delta H = +206 \text{ kJ mol}^{-1}$			
		U+O+O Forward reaction is exothermic			
01-	decrease	∴ decrease in temperature favours forward reaction			
8b	increase	Forward reaction reduces gas pressure (from 3mol to 1mol)			
		\therefore increase in pressure favours forward reaction			

9a	9.0	The total volumes of Cu^{2+} solution and NH3 solution must equal 10cm ³			
9b	4	Maximum colour intensity when Cu^{2*} : NH ₃ is 1:4 in experiment D \therefore 4 NH ₃ molecules reacts with each Cu^{2*} ion.			
10a	I_2 + 2 $e^- ightarrow 2I^-$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
10b(i)		The rough titration is used to work out the rough volume by adding around 1cm ³ at a time until the colour change is achieved. The experiment is then repeated by adding the majority of the rough titre volume in one go and them adding small volumes from this point until the colour change is achieved accurately. The experiment is repeated until concordancy is achieved (two or more volumes within 0.2cm ³ of each other)			
10b(ii)	0.0045375	no. of mol $S_2O_3^{2^-}$ = volume x concentration = 0.01815litres x 0.01mol l ⁻¹ = 0.0001815mol $I_2 + 2S_2O_3^{2^-} \longrightarrow 2I^- + S_4O_6^{2^-}$ 1mol 2mol 0.00009075mol 0.0001815mol concentration = $\frac{no. of mol}{volume} = \frac{0.00009075mol}{0.02litres} = 0.0045375mol l^{-1}$			
10b(iii)	Answer to include	$\frac{1 \text{ mark}}{\text{Mass of sodium thiosulphate = 3.96g}} \qquad \frac{1 \text{ mark}}{\text{Mention}} \qquad \frac{1 \text{ mark}}{\text{Mention of}} \\ \text{Mention of nol. Solution of mol. = volume x concentration} \\ = 0.25 \times 0.10 \\ = 0.025 \text{ mol} \\ \text{gfm Na}_2\text{S}_2\text{O}_3 = (2\times23)+(2\times32.1)+(3\times16) \\ = 46 + 64.2 + 48 \\ = 158.2g \\ \text{mass = no. of mol x gfm} \\ = 0.025 \times 158.2 \\ = 3.96g \\ \end{array}$			
11a(i)	Fermentation	glucose → ethanol + carbon dioxide C6H12O6 → C2H5OH + CO2			
11a (ii)	10.1-10.3	Line of best fit must be used to extrapolate the concentration of ethanol which has an absorbance of 0.9818 g cm ⁻³ .			
11b(i)	113.75	14% abv = 24.5 degrees proof 65% abv = 24.5 degrees proof × $\frac{65}{14}$ = 113.75 degrees proof			

		169	abv = 0.7litres			
11b(ii)				46		
		65% abv = 0.7litres x 46 65				
		= 0.495litres				
	£3.30					
			litres = £1300	405		
		0.49	95litre = £1300 x	195		
			= £3.30			
11b(iii)	Answer:	5-butyl-4-ethyltetrahydrofuran-2-ol				
110(11)	ANSWELL	(1C methyl group on c	original replaced with	2C ethyl group)		
11	Addition or	Water molecule adds acr	ass double band in ether	e to form ethanol		
11c(i)	hydration	Water molecule adds across double bond in ethane to form ethanol				
11	Na alamaa	Catalysts have no effect on position of equilibrium. Equilibrium				
11c (ii)	No change	concentrations of reactants and products remain the same but a catalyst will speed up the rate at which equilibrium is achieved.				
		3 mark answer	2 mark answer	1 mark answer		
12	Open Question answer to include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		
13a	Diagram showing:	Any ring structure with two CH_3 groups both pointing up or both pointing down				
	Larger the group	The larger the stam (4)F	(Rr) the larger the steri	c strain		
13b(i)	the larger the steric strain	The larger the atom (H <f<br) larger="" steric="" strain<br="" the="">The larger the group the larger the steric strain e.g. $CH_3 < (CH_3)_3C$</f<br)>				
13b(ii)	7.8	Steric Strain = 2 x steric strain between H and CH_3 = 2 x 3.8 = 7.6				